 LSU Math Circle Research Proposal

Completeness of Distributions

Instructor: Christian Ennis
Session: June 13 - July 2, 2022
Category: Probability Theory (Calculus not required)

Abstract: In the space of probability distributions on a countable space, such as the integers, we can easily define metrics within the space. The set of probability distributions is a subset of the infinite-dimensional space \mathbb{R}^∞, and while the space it resides in can be made into a vector space under pointwise addition, the set of probability distributions is easily seen to not be a subspace. However, we can still discuss the “closeness” of vectors residing in the set of distributions. The concept of completeness, in a metric space, is something often studied by those getting into introductory analysis. Being that the set of probability distributions on the integers can be made into a metric space, we will attempt to determine whether the set is complete under a given metric. That is, for a Cauchy sequence of distributions a_n in the set of distributions equipped with the metric ρ, does the property

$$\lim_{m,n \to \infty} \rho(a_n, a_m) \to 0$$

imply that

$$\lim_{n \to \infty} a_n \to a$$

for a distribution a in the set of probability distributions? We will start with the supremum metric. That is the metric ρ, defined on vectors a and b with

$$\rho(a, b) = \sup_k |a_k - b_k|$$

where a_k and b_k are the entries in the k^{th} coordinate of the vectors a and b respectively. Once a more thorough understanding of metrics is gained, we will determine what is not a metric on the set, and examine the completeness of other metrics on the set. Introductory topics in linear algebra, such as vector spaces, will be discussed as well.